Boolean Algebra#
The boolean algebra \(({0,1};\cdot , +, \overline{x})\)
| Boolean Algebra | |
|---|---|
| Kommutativ | \(x \cdot y = y \cdot x\) |
| \(x + y = y + x\) | |
| Assoziativ | \(x \cdot (y \cdot z) = (x \cdot y) \cdot z\) |
| \(x + (y + z) = (x + y) + z\) | |
| Distributiv | \(x \cdot (y + z) = x \cdot y + x \cdot z\) |
| \(x + (y \cdot z) = (x + y) \cdot (x + z)\) | |
| Indempotenz | \(x \cdot x = x\) |
| \(x + x = x\) | |
| Absorbtion | \(x \cdot (x+y) = x\) |
| \(x + (x \cdot y) = x\) | |
| Neutral | \(x \cdot 1 = x\) |
| \(x + 0 = x\) | |
| Dominant | \(x \cdot 0 = 0\) |
| \(x + 1 = 1\) | |
| Komplement | \(x \cdot \overline{x} = 0\) |
| \(x + \overline{x} = 1\) | |
| \(\overline{\overline{x}} = x\) | |
| De Morgan | \(\overline{x \cdot y} = \overline{x} + \overline{y}\) |
| \(\overline{x + y} = \overline{x} \cdot \overline{y}\) |