Exponential and Logarithm
Exponentiation bn corresponds to n repeated multiplication of the
base b:
bn=ntimesb×⋯×b
with b∈R and n∈N.
Rules
For n,m∈Z
Exponential Function
exp(x)≡ex:=n→∞lim(1+nx)n=n=0∑∞n!xn
with the exponential function exp:R→R, the argument
x∈R, the Euler number e=2,718281828..
For complex numbers:
ez=ea+bi=ea⋅(cosb+isinb) with
z∈\C, a,b∈R and the imaginary unit i.
Logarithm
The logarithm is the inverse function to exponentiation.
logb(x)=yexactly ifby=x
with b,x,y∈R
Calculation Rules
For b,x,y∈R
Other notations: log2≡\lb, loge≡ln, ,
log10≡lg
Taylor Series
ln(z)=1(z−1)1−2(z−1)2+3(z−1)3−4(z−1)4+⋯