Skip to content

Exponential and Logarithm#

Exponentiation bnb^n corresponds to nn repeated multiplication of the base bb:

bn=b××bntimesb^{n} = \underbrace{b \times \dots \times b}_{n\,{\textrm {times}}}

with bRb \in \R and nNn \in \N.

Rules#

For n,mZn, m \in \Z

Sum bm+n=bmbn\displaystyle b^{m+n} = b^{m} \cdot b^{n}
(bm)n=bmn\left( b^{m} \right)^{n} = b^{m \cdot n}
Product (bc)n=bncn(b \cdot c)^{n} = b^{n} \cdot c^{n}

Exponential Function#

exp(x)ex:=limn(1+xn)n=n=0xnn!\exp(x) \equiv e^x := \lim\limits_{n \rightarrow \infty} \left( 1 + \frac{x}{n} \right)^n = \sum\limits_{n = 0}^{\infty} \frac{x^n}{n!}

with the exponential function exp:RR\exp: \R \ra \R, the argument xRx \in \R, the Euler number e=2,718281828..\mathrm{e} = 2,718281828..

For complex numbers: ez=ea+bi=ea(cosb+isinb)\(\e^{\cx z} = \e^{a + b\i} = \e^a \cdot ( \cos b + \i \sin b )\) with z\C\cx z \in \C, a,bRa, b \in \R and the imaginary unit i\i.

Logarithm#

The logarithm is the inverse function to exponentiation.

logb(x)=yexactly ifby=x\log_{b}(x) = y \qquad \text{exactly if} \qquad b^{y} = x

with b,x,yRb, x, y \in \R

Calculation Rules#

For b,x,yRb, x, y \in \R

Product logb(xy)=logbx+logby\displaystyle \log_{b}(x \cdot y) = \log_{b} x + \log_{b} y
Quotient logbxy=logbxlogby\displaystyle \log_{b} \frac{x}{y} = \log_{b} x - \log_{b} y
Power logb(xp)=plogbx\displaystyle \log_{b} \left( x^{p} \right) = p \cdot \log_{b}x
Root logbxp=logbxp\displaystyle \log_{b} \sqrt[p]{x} = \frac{\log_b x}{p}
Change base logbx=logkxlogkb\displaystyle \log_{b} x = \frac{\log_{k} x}{ \log_{k} b }

Other notations: log2\lb\log_2 \equiv \lb, logeln\log_{\e} \equiv \ln, , log10lg\log_{10} \equiv \lg

Taylor Series#

ln(z)=(z1)11(z1)22+(z1)33(z1)44+\ln(z)={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots